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J. Phys. A: Math. Gen. 19 (1986) L1039-Ll045. Printed in Great Britain 

LElTER TO THE EDITOR 

Superconformal invariance in the Ashkin-Teller quantum chain 
with free boundary conditions 

G von Gehlen and V Rittenberg 
Physikalisches Institut, Universitat Bonn, Nussallee 12, D-5300 Bonn 1, West Germany 

Received 25 June 1986 

Abstract. The finite-size limit of the lower part of the spectrum of the Ashkin-Teller chain 
with free boundary conditions is studied numerically and interpreted from the point of 
view of conformal invariance. Several irreducible representations of the Virasoro algebra 
with the central charge c = 1 are identified. For two special values of the coupling constant, 
higher degeneracies occur and the whole spectrum can be understood in terms of a few 
irreducible representations of the N = 2 superconformal algebra. 

In a previous paper (von Gehlen and Rittenberg 1968a) we have have studied the 
lowest part of the spectrum of the four-state Ashkin-Teller (1943) quantum chain 
introduced by Kohmoto et a1 (1981) and we have found a few critical exponents. In 
the present letter we show some new results which have been obtained from the study 
of higher excitations. The model is defined by the Hamiltonian 

(1) 
l N  

2 ( 1 + ~ ) i = 1  
H=-- C { [ + + E ( ui )2] + A [ r r ;+ + r : r + + E (r i)2( r i +  

where N represents the number of sites, A playes the role of the inverse of the 

\ o  0 

temperature, E is a coupling constant and 

0 0 0 0 1  

-1 0 0 1 0 0  
0 - i  0 0 1 0  

The model is self-dua. and has a continuous phase transition at A = 1 c..aracterised 
by a central charge of the Virasoro algebra c = 1 in the region - 1 < E =s 1. (Actually 
the phase diagram shows a richer structure but in this letter we confine ourselves to 
study only the line A = 1, - 1 < E  S 1.) Since for c = 1, in the absence of higher 
symmetries, the critical exponents are not constrained as in the case c < 1 to a finite 
set of rational numbers (Friedan et a1 1984), we can expect that for each value of E 

one can find an infinite number of unrelated critical exponents and that for various 
values of E one finds other exponents. The situation could change, however, if higher 
symmetries are present which would again discretise the critical exponents. It is the 
aim of this letter to clarify this point. 
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L1040 Letter to the Editor 

It was noticed by Kohmoto et a1 (1981) that for the considered interval of E it is 
convenient to consider the function x ~ ( E ) :  

in terms of which the critical exponents have simple expressions ( x T ( & )  is the scaling 
dimension of the energy density operator which varies continuously with E ) .  Some 
special points are already known: xT =f corresponds to the four-state Potts model, 
xT = 1 describes two uncoupled Ising models and xT = 2 is a Kosterlitz-Thouless point. 
Another special point is xT = 3 which has a higher symmetry as discussed by Zamolod- 
chikov and Fateev (1985). As will be shown in this letter there are two other special 
points xT = $ and 3 where one has superconformal invariance. 

We consider the Hamiltonian (1) with free boundary conditions (r,+, = 0). The 
Hamiltonian commutes with the Z,  charge operator: 

N 6=  qi(mod4) 
i= 1 

where 

0 0 0 0  

q = o  i : r : . i  0 2 0 ’  

Because of charge conservation, the Hamiltonian splits into four charge sectors and 
we denote the corresponding matrices by H r )  ( Q  = 0,1,2 and 3). From the invariance 
under charge conjugation we have 

(5) 

and we will thus study only the matrices with Q = 0, 1 and 2. Let E F ’ ( s ) ( s  = 0,1, .  . .) 
be the energy levels in the charge Q sector for N sites. We consider the quantities 
(Cardy 1984, 1986, von Gehlen and Rittenberg 1986b) 

H ~ F )  = H ( F )  
3 

where E ‘ F ’ =  EhF’(0) is the ground state of the system. The constant 6 gives the 
Euclidean timescale and can be determined using the methods described in von Gehlen 
and Rittenberg (1986a). 5 is, of course, a function of E. It is a consequence of conformal 
invariance in two dimensions that the quantities ga(s)  are described by unitary 
irreducible representations ( I R )  of the Virasoro algebra 

(7)  [ L , ,  L,] = ( n  - m)L,+ ,  + M n 3  - n)an,- ,  

Ll A) = A I4 L, 1 A) = o ( n  2 1) (8) 

g a ( r )  = . A +  r ( r=0 ,1 ,2 ,  ...) (9) 

n , m E Z  

namely, an I R  of the Virasoro algebra characterised by the highest weight A: 

gives a contribution 
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to the spectrum g0(s). A is a surface critical exponent (Binder 1983, Cardy 1984) and 
the level A +  r has a degeracy D(A, r) which for c 4 1 can be obtained from the character 
formulae of Rocha-Caridi (1985). For c = 1, which is our case, the function D(A, r) 
is independent of A and equal to the function T( r )  determined by the partition function 

m m n ( l - q " ) - ' =  c T ( r ) q r  
n = 1  r = O  

(10) 

unless A = t t 2  where t is an integer. In the latter case D(it', r) can be determined from 
the character formulae of Kac (1979). 

From the measured spectrum gQ(s) one can determine which IR (A)  contribute to 
the spectrum and thus the operator content of the Hamiltonian, i.e. the surface critical 
exponents of the system. One more observation is in order. As a consequence of the 
parity invariance of the Hamiltonian (1) the spectrum gQ(s) is composed by the parity 
even (S;') and odd ( % G I )  sectors: 

% Q  = 8s' (11) 

If the IR (A)  has the highest weight in the sector %r' (P = *), we will denote the 
IR by (A)'. The level l A +  r) has the relative parity ( -  1)' to the level IA). This is a 
consequence of the invariance under the transformation 

L, +. ( - l)"Ln ( n  E a (12) 

of the Virasoro algebra. 

that the 
Without going into details, we have checked numerically for several values of E 

contain the following IR with the right degeneracies: 

The I R  given in (13) do not exhaust the operator content of the spectrum but they 
describe its lowest part. A closer examination of the xT dependence of the surface 
exponents given by (13) as well as of the bulk exponents (von Gehlen and Rittenberg 
1986a) suggest that the xT =$ and xT = 3 are points of higher symmetry. This guess 
was confirmed by our study as will be shown below. 

We first present in detail the x + = $  case. Chains from 2-10 sites have been 
considered and the Van den Broeck-Schwartz (1979) approximants for the %$) are 
presented in tables 1-3. (The normalisation factor is m$ = 3.7614(3)). A cursory look 
at the spectra would suggest the following operator content of the Hamiltonian: 

%o= (O)+@($)+ 

%* = ( l )+@ ($)+. 

g1 = g3 = (i)+ (14) 

This picture is not correct, however, since it does not give the right degeneracies. For 
the level 4 (%r)) one finds three levels instead of two and for the level ;+3 one finds 
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Tible 1. The finite-size limit spectrum So in the charge zero sector for xT =$. The 
degeneracies D are computed considering the IR (0) and (3) of the Virasoro algebra with 
c = 1. The degeneracies d are computed considering the I R  (0), ofthe N = 1 superconformal 
algebra. The levels a, 6,. . . , fare  exactly degenerate with the corresponding levels of table 
3 for any number of sites. 

~~ ~~~~~ ~ 

0 1 1  
I 1 1  
2 1 1  
$ 1 1  
3 1 1  
T 2 2  
4 3 2  
; 3 3  
5 3 2  
9 5 5  

3 

? 

0 

2.000 
2.500(1)* 

- 

- 
4.001 (3), 4.oooO (6), 4.0001 (5) 
4.49 (2Y, 4.49 (lY, 4.500 (1) 

- 
1.4999 (1)" 
- 
- 
3.oooo (7) 
3.499 (3)', 3.5000 (6)d 

- 
4.993 (8), 4.97 (7), 5.01 (3) 
5.3 (2), 5.49 (1) 

Table 2. The finite-size limit (&, in the charge one sector for xT =a.  The degeneracies D 
are computed considering the IR (& of the Virasoro algebra. The degeneracies d are 
computed considering the I R  (i), of the N = 1 superconformal algebra. 

$=0.375 1 1 0.37499(2) - 

;+2 2 2 2.3749 (5), 2.3750 (3) - 
$+ 1 1 1 -  1.375 00 (6) 

$+3 4 3 3.3753 (8) 3.374(4), 3.3749 (5), 3.376 (2) 
$+4 6 5 4.36 (3), 4.374 (5), 4.375 (1) 4.376 (7) 

4.3749 (6), 4.35 (4) 
$+ 5 9 7 -  5.4 (l), 5.3 (2) 

Table 3. The finite-size limit %* in the charge two sector for xT = 4. The degeneracies D 
are computed considering the IR (1) and (i) of the Virasoro algebra. The degeneracies d 
are computed considering the IR (l), of the N = 1 superconformal algebra. The levels 
a, b, . . . ,f are exactly degenerate with the corresponding levels of table 1. 

1 

2 
5 I 
3 
I 
4 
I 
5 

; 

7 

9 

1 1  
1 1  
1 1  
1 1  
2 2  
2 2  
2 2  
3 3  
4 4  

0.999 98 (6) 
1.4999 (1)" 

- 
3.000 (1) (6), 3.004 (8) 
3.499 (3)', 3.5000 (6)d 

- 
5.01 (5), 4.96 (3) 

- 
2.0000 (3) 
2.500 (l)* 
- 
- 
4.000 (l), 3.98 (5) 
4.49 (2y, 4.49 (lY, 4.5 (1) 
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four levels (one with the wrong parity) instead of three. (The values of the degeneracies 
D have been computed for us by Altschuler and Lacki (1986).) This mismatch of the 
degeneracies suggests a higher symmetry of the spectrum. We now recall that for c = 1 
the Virasoro algebra can be enlarged to the N = 1 and N = 2 superconformal algebras. 

The N = 1 superconformal algebra contains besides the Virasoro generators L,, 
the odd generators G, (Friedan er a1 1985, Berdshadski et a1 1985, Eichenherr 1985). 
The corresponding superalgebra contains besides (7) the following commutation and 
anticommutation relations: 

[Ln, Grl=(tm-r)Gm+r 

{G,, G , } = 2 L , + , + f ~ ( ~ ~ - ~ ) 6 , , ~ ,  (15) 
where r, s E 2 for the Ramond sector and r, s E 2 +; in the Neveu-Schwartz sector. 
For c = 1 the possible values of A are 

Neveu-Schwartz sector 

Ramond sector 
((01, (A), ( 3 1 ,  ( 1 ) l  

(&)I 9 ( & ) I ,  ( d l 1  , ( & ) I  
(16) 

Here (A)1  denotes an I R  with the highest weight A of N = 1 extended supersymmetry. 
An IR has the spectrum A + $  ( r  = 0 , 1 , .  . .) in the Neveu-Schwartz sector and A +  r in 
the Ramond sector. The degeneracies d(A, r )  can be derived from the character 
formulae of Goddard et a1 (1986). The values of d(A, r )  for our cases are shown in 
tables 1-3 and now we notice that we get the correct values of the degeneracies. We 
thus have instead of (14) 

g o  = (O), 8 1 = ~3 = (211 %2=(1)1. (17) 
That this picture is correct can be also checked from the associative algebra related 
to the short-distance expansion (Belavin er a1 1984, Berdhadski er a1 1985): 

( O ) I @ ( O ) l  = (01, (0)1@(1)1= ( 1 ) l  (1 )1@(1)1=(0)1  (18) 
in agreement with the Z2 grading of go and g 2 .  

We now notice that several levels from the go sector are exactly degenerate (for 
any number of sites) with levels in the g2 sector (see tables 1 and 3). This suggests a 
still higher symmetry if we put the go and g2 sectors together. Let us consider the 
N = 2 superconformal algebra (Di Vecchia et a1 1985, 1986, Waterson 1986, Boucher 
et a1 1986). For c = 1 the I R  are 

Neveu-Schwartz sector (0; 0 1 2 ,  (i;  *+I2  

(3. 0) ('. *I) (L. * 2  
(19) 

Here (A; q ) 2  represents the I R  of the N = 2 superconformal algebra with highest weight 
A and charge q. (There is a U(1) charge which appears in this case.) The N = 2  I R  

can be decomposed in terms of N = 1 I R .  We have 

Ramond sector 8 ,  29 249 3 2 ,  24, 312 .  

With this final observation we can sum up our result. The finite-size limit of the 
spectrum of the Hamiltonian at xT = $ has N = 2 supersymmetry with the following 
content of IR: 

'&,+'&, = (0; O), c&l=c&3=(;;o)2. (21) 
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Trble 4. The finite-size limit 8, in the charge zero sector for xr = 3. The degeneracies D 
are computed using the I R  (0) and (3) of the Virasoro algebra. The degeneracies d are 
computed using the I R  (0), and ( A ) ,  of the N = 1 superconformal algebra. The levels 
a, b, . , . ,J  are exactly degenerate with the corresponding levels of table 6 for any number 
of sites. 

~~~~ ~~ 

- 1 1  
f 1 1  
f +  1 1 1  

f + 2  3 2  

f + 3  4 3  

- 1 1  

- 1 1  

- 3 2  
f + 4  6 5  

3 2  

0 

1.666 (1)" 
2.00 
2.670 ( 5 ) b  

3.66 (3)d, 3.68 (1)' 
4.1 (2), 3.97 (2) 

- 

- 

- 
- 

0.666 (2) 
- 
- 
2.670 (5)b, 2.73 (2)' 
3.05 (1) 
3.66 (3)d 

4.63 (3y, 4.66 (1) 
5.00 (1) 

Table 5. The finite-size limit $, in the charge one sector for xr = 3. The degeneracies D 
are computed using the I R  ( d )  and ( 5 )  of the Virasoro algebra. The degeneracies d are 
computed using the I R  (A), and ( O ) ,  (or ( l ) , )  of the superconformal algebra. 

;+ r 

a = 0.1666 . 
;+ 1 

;+2 

i + 3  

:+4 

- 

- 

- 

- 

. .  - 1 1  
- 1 1  
s 1 1  
- 2 2  
I 1 1  
- 3 3  
I 2 2  
- 6 5  
2 3 3  

3 

5 

7 

9 

0.1665 (3) 

1.497 (4) 
2.165 ( l ) ,  2.25 (2) 

- 

- 
3.47 (2), 3.52 (9) 
4.16 (2), 4.17 ( l ) ,  4.2 (2) 
- 

- 
1.1664 (6) 
- 
- 
2.5 (1) 
3.16(1), 3.22 ( l ) ,  3.3 (2) 
- 
- 
4.46 (3), 4.3 (2) 

Table 6. The finite-size limit g2 in the charge two sector for xy = 3. The degeneracies D 
are computed using the I R  (3) and (1) of the Virasoro algebra. The degeneracies d are 
computed using IR (&), and ( l ) ,  of the N = 1 superconformal algebra. The levels a, b, . . . ,J  
are exactly degenerate with the corresponding levels of table 4. 

f +  r l + r  d D @+' si-' 
2 - 5 

1 - 
f +  1 - 

2 - 
f + 2  - 

1 1  
1 1  
1 1  
1 1  
3 2  
2 2  
4 3  
2 2  
6 5  

0.666 (2) 
1.003 (8) 

- 
2.670 ( 5 ) b ,  2.73 (2)' 
2.991 ( l ) ,  3.2 (1) 
3.66 (3)* 

4.63 (3)f 
- 

- 
1.666(1)" 
2.07 (2) 
2.670 (5)b 

3.66 (3)4 3.68 (1)' 
3.99 (2) 

- 
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We now consider the XT = 3 case. The numerical results are shown in tables 4-6. 
(The normalisation is vt = 6.986(5)). Their interpretation is the following one. The 

can be expressed in terms of the IR of the Virasoro algebra: 

% o = ( O ) @ ( $ )  =%,=(:)@(;) % 2 = ( $ ) @ ( 1 )  (22) 

but then the degeneracies are wrong. We now combine c&, with g1 and g2 with g3 and 
describe the spectra in terms of N = 1 superconformal IR: 

'%,+'&I = (o)l@(:)l % , + % 3  = (:)I@ ( I ) ,  . (23) 

In this way we get the correct degeneracies. 

invariance: 
The whole spectrum can now be combined in order to obtain N = 2 superconformal 

%,+%,+%,+%, = (0; o),@(:; q ) 2 @ ( i ;  q')2.  (24) 

The two U(l)  charges q and q' are unknown to us. 
This concludes our observations about the spectra with free boundary conditions. 

The corresponding results for periodic and twisted boundary conditions will be pub- 
lished elsewhere. One important conclusion of that study is that for periodic boundary 
conditions and any XT the value A = appears, which does not figure on the list (19) 
of the possible values of the highest weight for N = 2 superconformal algebra and thus 
the Hamiltonian with periodic boundary conditions is not N = 2 supersymmetric 
although the Hamiltonian with free boundary conditions is. 

Note added in proof: After this letter was submitted for publication, we found another supersymmetric point 
at xT = 12 with the following I R  content: 

E,= (O),O(d), 8, = 8, = (h,,@(t,, 8, = ( 1 ) 1 +  (t,, . 
The combination of the spectra leads again to N = 2 supersymmetry. 
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